Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
Hint:
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree?
According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Union Find
树是无环的联通图,所以一个无向图做为树需满足如下条件
边的数量 = n - 1
用union find连接每一个点,不能出现两个点,已经连接的情况
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
publicbooleanvalidTree(int n, int[][] edges){
if (n <= 0 || edges == null)
returnfalse;
if (edges.length != n - 1)
returnfalse;
int[] fathers = newint[n];
for (int i = 0; i < n; i++) {
fathers[i] = i;
}
for (int[] edge : edges) {
int fax = find(fathers, edge[0]);
int fay = find(fathers, edge[1]);
if (fax == fay)
returnfalse;
fathers[fax] = fay;
}
returntrue;
}
privateintfind(int[] fathers, int x){
int fa = fathers[x];
while (fa != fathers[fa]) {
fa = fathers[fa];
}
return fa;
}
DFS
DFS和BFS都不是自己写的,有机会自己再写一下吧
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
privatebooleanvalidDFS(int n, int[][] edges){
// build the graph using adjacent list
List<Set<Integer>> graph = new ArrayList<Set<Integer>>();
for (int i = 0; i < n; i++)
graph.add(new HashSet<Integer>());
for (int[] edge : edges) {
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
// no cycle
boolean[] visited = newboolean[n];
Deque<Integer> stack = new ArrayDeque<Integer>();
stack.push(0);
while (!stack.isEmpty()) {
int node = stack.pop();
if (visited[node])
returnfalse;
visited[node] = true;
for (int neighbor : graph.get(node)) {
stack.push(neighbor);
graph.get(neighbor).remove(node);
}
}
// fully connected
for (boolean result : visited) {
if (!result)
returnfalse;
}
returntrue;
}
BFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
privateboolean valid(int n, int[][] edges) {
// build the graph using adjacent list
List<Set<Integer>> graph = new ArrayList<Set<Integer>>();