可以用来快速查询O(logn)数组一定区间内的最大值,最小值,和。存储结构可以用Tree,也可以用数组。这里提供一个从geeksforgeeks上找到的用数组的代码(略有调整)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import java.util.Arrays;
public class SegmentTree {
int st[]; // The array that stores segment tree nodes
int[] arr;
/* Constructor to construct segment tree from given array. This
constructor allocates memory for segment tree and calls
constructSTUtil() to fill the allocated memory */
SegmentTree(int[] arr) {
// Allocate memory for segment tree
// Height of segment tree
this.arr = Arrays.copyOf(arr, arr.length);
int n = arr.length;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
//Maximum size of segment tree
int max_size = 2 * (int) Math.pow(2, x) - 1;
st = new int[max_size]; // Memory allocation
constructSTUtil(0, n - 1, 0);
}
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) {
return s + (e - s) / 2;
}
/* A recursive function to get the sum of values in given range
of the array. The following are parameters for this function.
st --> Pointer to segment tree
si --> Index of current node in the segment tree. Initially
0 is passed as root is always at index 0
ss & se --> Starting and ending indexes of the segment represented
by current node, i.e., st[si]
qs & qe --> Starting and ending indexes of query range */
int getSumUtil(int ss, int se, int qs, int qe, int si) {
// If segment of this node is a part of given range, then return
// the sum of the segment
if (qs <= ss && qe >= se)
return st[si];
// If segment of this node is outside the given range
if (se < qs || ss > qe)
return 0;
// If a part of this segment overlaps with the given range
int mid = getMid(ss, se);
return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
}
/* A recursive function to update the nodes which have the given
index in their range. The following are parameters
st, si, ss and se are same as getSumUtil()
i --> index of the element to be updated. This index is in
input array.
diff --> Value to be added to all nodes which have i in range */
void updateValueUtil(int ss, int se, int i, int diff, int si) {
// Base Case: If the input index lies outside the range of
// this segment
if (i < ss || i > se)
return;
// If the input index is in range of this node, then update the
// value of the node and its children
st[si] = st[si] + diff;
if (se != ss) {
int mid = getMid(ss, se);
updateValueUtil(ss, mid, i, diff, 2 * si + 1);
updateValueUtil(mid + 1, se, i, diff, 2 * si + 2);
}
}
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int n, int i, int new_val) {
// Check for erroneous input index
if (i < 0 || i > n - 1) {
System.out.println("Invalid Input");
return;
}
// Get the difference between new value and old value
int diff = new_val - arr[i];
// Update the value in array
arr[i] = new_val;
// Update the values of nodes in segment tree
updateValueUtil(0, n - 1, i, diff, 0);
}
// Return sum of elements in range from index qs (quey start) to
// qe (query end). It mainly uses getSumUtil()
int getSum(int n, int qs, int qe) {
// Check for erroneous input values
if (qs < 0 || qe > n - 1 || qs > qe) {
System.out.println("Invalid Input");
return -1;
}
return getSumUtil(0, n - 1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int ss, int se, int si) {
// If there is one element in array, store it in current node of
// segment tree and return
if (ss == se) {
st[si] = arr[ss];
return arr[ss];
}
// If there are more than one elements, then recur for left and
// right subtrees and store the sum of values in this node
int mid = getMid(ss, se);
st[si] = constructSTUtil(ss, mid, si * 2 + 1) +
constructSTUtil(mid + 1, se, si * 2 + 2);
return st[si];
}
// Driver program to test above functions
public static void main(String args[]) {
int[] arr = {1, 3, 5, 7, 9, 11};
int n = arr.length;
SegmentTree tree = new SegmentTree(arr);
// Build segment tree from given array
// Print sum of values in array from index 1 to 3
System.out.println("Sum of values in given range = " +
tree.getSum(n, 1, 3));
// Update: set arr[1] = 10 and update corresponding segment
// tree nodes
tree.updateValue(n, 1, 10);
// Find sum after the value is updated
System.out.println("Updated sum of values in given range = " +
tree.getSum(n, 1, 3));
}
}

Ref:

  1. Algorithm Gym :: Everything About Segment Trees
  2. Segment Tree | Set 1 (Sum of given range)
  3. SegmentTree.java